The path to a just transition – II

In this part of the series of posts on a just energy transition, I’ll explore what an energy transition is, and why we must achieve it.

Energy transition is simply the switch our current dependence on fossil fuels to renewable or low carbon sources for energy production. This is essential because climate change is being fueled by our dependence on mineral fuels- the use of which release greenhouse gases into our atmosphere.

Greenhouse gases are gases that trap the Sun’s heat in our atmosphere, leading to a long term warming of our planet, causing local and global weather changes that living beings on the planet did not evolve with, and also causing abiotic planetary forces to react in ways that harm life and infrastructure- for example, warmer oceans lead to more hurricanes, causing greater property damage and loss of human, animal, and plant lives.

Since these gases collect in the atmosphere, there is a build up of heat absorbing chemicals in the air over time. Carbon Dioxide in particular persists in the atmosphere fore thousands of years, which means that the CO2 released into the atmosphere by, for example, burning coal to fire steam engines during the industrial revolution, is still blanketing us today. Other gases issued due to the combustion of fossils have shorter lifespans, but greater warming effects due to the structure of their molecules- although methane (CH4) on average lasts in the atmosphere for less than 12 years, it’s 100 year warming potential can be between 28 to 36 times as potent as CO2, for example1.

Just like if the planet were to cool (and continue cooling) overmuch, a planet that is heating up is catastrophic to life and property.

In comparison, non fossil sources of energy are considered clean fuels, since they do not liberate the greenhouse gas genie into our atmosphere while operating to produce energy. Please do note that while they contribute negligible amounts to global warming while making electricity, they do contribute to it through their supply chains- that is, scope 2 and 3 emissions.

The National Renewable Energy Laboratory (NREL) reviewed nearly 3,000 published life cycle assessment studies on utility-scale electricity generation
from wind, solar photovoltaics, concentrating solar power, biopower, geothermal, ocean energy, hydropower, nuclear, natural gas, and coal technologies, as well as lithium-ion battery, pumped storage hydropower, and hydrogen storage technologies, greenhouse gas (GHG) emissions from various sources of energy to inform policy, planning, and investment decisions. Less than 15% of the studies passed the various quality and relevance checks. On studying the ones that did pass these checks, NREL came to the conclusion that the Median Published Life Cycle Emissions Factors for Electricity Generation Technologies was as follows2:

S. No.Type of TechnologyGeneration TechnologyMedian Published Life Cycle Emissions Factors
1.RenewableBiomass52
2.RenewablePhotovoltaica43
3.RenewableConcentrating Solar Powerb28
4.RenewableGeothermal37
5.RenewableHydropower21
6.RenewableOcean8
7.RenewableWindc13
8.StoragePumped Storage Hydropower7.4
9.StorageLithium-ion Battery33
10.StorageHydrogen Fuel Cell38
11.Non RenewableNucleard13
12.Non RenewableNatural Gas486
13.Non RenewableOil840
14.Non RenewableCoal1001
Median Published Life Cycle Emissions Factors for Electricity Generation Technologies
a Thin film and crystalline silicon; b Tower and trough; c Land-based and offshore; d Light-water reactor (including pressurized water and boiling water) only

As can be seen in the table above, the median Emission Factor (Emission Factors are a way to understand how much GHG emissions were released due to a particular activity) for the total lifecycle Non Renewables are far greater than those of either storage or renewable technologies. These emissions are primarily released during the combustion phase for the Non Renewables, however non of the other technologies require combustion to create electricity (and neither does Nuclear Light-Water Reactor technology, resulting in the very low Median Lifecycle EF).

Global greenhouse gas (GHG) emissions grew by 51% from 1990 to 2021, and more than 75% of these emissions come from the energy sector.3 Thus it’s obvious that by switching over to sources of energy that are not carbon intensive, we will be able to target the most conspicuous source of planet warming emissions. Shifting out of non renewable sources of energy will also reduce our dependence on fossils, and diversify our energy mix and enhance global energy security (in 2022 fossil fuels provided 81% of the total energy supply globally4), improve global health outcomes by reducing pollution, and finally- also improve the climate outlook.

Sources

  1. Climate Change Indicators: Greenhouse Gases, USEPA
  2. Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update, NREL
  3. Where Do Emissions Come From? 4 Charts Explain Greenhouse Gas Emissions by Sector, WRI
  4. Greenhouse Gas Emissions from Energy Data Explorer, IEA

The path to a just transition – I

It is known even now the world will go through extreme climate events that cannot be avoided. Such events, caused by human activities indirectly trapping heat in our planet’s atmosphere which has already resulted in an increase of nearly 2 degrees Fahrenheit (1.1 degrees Celsius) between 1850-19001, are likely to include more wildfires, more floods, more hurricanes, more droughts, more heatwaves, different precipitation patterns,2 seasonal changes that happen at different times than a century, or even just a couple of decades ago among other negative outcomes. Weather events are also expected to be more intense than earlier ones- that is, there will be more incidence of hotter heatwaves, hurricanes on the higher side of the scale, more intense precipitation, etc.

While many of these adverse impacts cannot be avoided any longer, we can prevent an exacerbation of these outcomes by shifting to a lower carbon economic system than what we have now. This shift from carbon intensive economic activities to an economy that is either carbon neutral (net zero) or negative is referred to as climate transition.

Our global economy is heavily reliant on mineral fuels- currently two-thirds of our fuel demand is met through fossil fuels3. In the Global Energy Review 2025, the International Energy Agency (IEA) has stated that the carbon intensity of global economic activity is the product of the energy intensity of GDP and the carbon intensity of total energy supply.4 That is, we first find out how much energy it takes to produce the entire world’s Gross Domestic Product, and then multiply it with the amount of carbon produced to make that much energy. This means we can slow down carbon emissions in two ways- reduce our production and consumption activities, or make sure it takes less energy to keep them at the same level they are today.

In 2019, heat and electricity production cost us 34% of the global greenhouse gas production, industry accounted for 24%, transportation 15%, and buildings 6% of the global greenhouse gas emissions in that year. It may be noted that 95% of the transportation sector runs on fossil fuels.5 And, in 2024, the CO2 intensity per unit of economic activity was lower than the average improvement seen over the previous decade.4 So not only are we using a lot of energy to support our lifestyles, we are also failing to decrease the amount of greenhouse gases that are released into the atmosphere due to these activities.

It is clear that the change to a lower carbon economy is emergent, must be large scale, and involve every sector and industry in the global economy, including the labour markets, and therefore the communities those workers belong to. It’s a systemic shift that will affect all living beings on our planet, and cause significant human distress unless it is planned and executed with careful compassion.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,”

– IPCC Working Group II Co-Chair, Hans-Otto Pörtner3

Given the above, energy transition is a formidable task ahead of our species. A just transition, which distributes an equitable burden for the resources required to finance the transition among those who are wealthy and those who are not, is going to be even more challenging.

Accelerating climate actions and progress towards a just transition is essential to reducing climate risks and addressing sustainable development priorities, including water, food and human security.

-IPCC Sixth Assessment Report Working Group III: Mitigation of Climate Change7

The consequences of climate change affect people disproportionately- the impoverished suffer much more than those who have the resources to avoid the results of the adverse fallout of climate change. Climate change energy transitions are also going to have widespread consequences. A “just” climate transition is one where the economic burden of the transition falls on people in the proportion in which they contributed to climate change- this means that the wealthy with extravagant lifestyles bear more responsibility, and cost, for the shift to a carbon neutral or negative economy than workers who are living within a system they did not create. This also means countries which industrialised in the 1800s must answer for the greenhouse gases they pumped into the atmosphere to achieve their prosperity, and that most corporations bear greater responsibilities than most individuals.

In this series of posts, I’ll explore what the energy transition will require, how we may go about achieving it, and what we must do for the transition to be just.

Sources

  1. Climate Change 2021: The Physical Science Basis, IPCC
  2. The Effects of Climate Change, NASA
  3. Fueling a Transition Away from Fossil: The Outlook for Global Fossil Fuel Demand
  4. Global Energy Review 2025, IEA
  5. Global Greenhouse Gas Overview, USEPA
  6. 2025 emissions set to surpass 1990 levels by over 50% despite current climate pledges, UNFCCC warns
  7. Chapter 17: Accelerating the transition in the context of sustainable development, IPCC Sixth Assessment Report Working Group III: Mitigation of Climate Change